Stock Data Clustering and Multiscale Trend Detection
نویسنده
چکیده
Generally, trend detection algorithms over the data stream require expert assistance in some form. We present an unsupervised multiscale data stream algorithm which detects trends for evolving time series based on a data driver data stream. The raw stream data clustering algorithm is incremental, space dilating and has linear time complexity. The evolving stream is incrementally explored on a number of windows. Whenever a change occurs, we switch the analysis on this driver data stream in order to detect the new aggregated patterns and the new best selection of window widths among an exponential base set. The window widths are detected using a slightly modified version of an incremental SVD procedure. We apply this clustering algorithm to a free public NYSE stock exchange financial data feed, investigating incrementally the developing trends during the current crisis data from 2007 to 2009. The algorithm detected the changing widths of the trends as well as the trends themselves in the market.
منابع مشابه
Stock Trend Analysis and Trading Strategy
This paper outlines a data mining approach to analysis and prediction of the trend of stock prices. The approach consists of three steps, namely partitioning, analysis and prediction. A modification of the commonly used k-means clustering algorithm is used to partition stock price time series data. After data partition, linear regression is used to analyse the trend within each cluster. The res...
متن کاملForecasting Stock Trend by Data Mining Algorithm
Stock trend forecasting is a one of the main factors in choosing the best investment, hence prediction and comparison of different firms’ stock trend is one method for improving investment process. Stockholders need information for forecasting firm’s stock trend in order to make decision about firms’ stock trading. In this study stock trend, forecasting performs by data mining algorithm. It sho...
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملClustering underlying stock trends via non-negative matrix factorization
Building a diversified portfolio is an appealing strategy in the analysis of stock market dynamics. It aims at reducing risk in market capital investments. Grouping stocks by similar latent trend can be cast into a clustering problem. The classical K-Means clustering algorithm does not fit the task of financial data analysis. Hence, we investigate Non-negative Matrix Factorization (NMF) techniq...
متن کاملModeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کامل